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Abstract: In the last two decade, it has become clear that retention methods 
must utilize polychoric correlation instead of Pearson correlation to eliminate 
drawbacks such as underestimation of the magnitude of the relationship between latent 
variables that result in spurious findings (Bernstein & Teng, 1989). In the present 
study, the literature review will be examined and compared using Monte Carlo 
simulation to determine the most parsimonious method of retention for categorical 
data. With continuous variables, the majority of researchers still implement Cattell’s 
scree test (Henson & Roberts, 2006) and Kaiser-Guttman-1 rule (Velicer et al., 2000), 
because these procedures are the default in popular statistical packages, such as SPSS 
and SAS. The present study will examine two of the most accurate methods: MAP 
(Minimum Average Partial) and PA (Parallel Analysis) along with Very Simple 
Structure (VSS) with categorical variables. 
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Introduction 
 

One of the main challenges in measurement instrument development for educational 
purposes is the need to identify latent variables based upon observed variables. Generally, because 
relationships exist between latent variables, most instruments encompass more than one trait. 
Factor analysis is one of the methods utilized to identify the latent traits that instruments measure. 
Factor analysis is the general term for two techniques in literature: exploratory factor analysis 
(EFA) and principal component analysis (PCA). Since EFA extracts more factors empirically than 
the actual number of true factors that exist, the decision of the number of factors to retain becomes 
a crucial decision for analysts. Many different methods and procedures have been introduced and 
developed for factor retention, but the majority of these methods were originally designed for 
continuous variables. Moreover, especially in education and psychology, instrumentation consists 
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of dichotomous and categorical item indicators therefore creating a need for the examination of 
retention methods and techniques that are optimal for categorical variables. 

The advancement in computer technology and software has led to less time in computation 
for factor analysis, especially for some retention methods that utilize simulation techniques. Even 
though the availability of software and the speed of computation make it possible to use multiple 
methods to determine the number of factors to retain, the K-G-1 rule is still the most popular 
retention method since it is the default method in some statistical packages.  

Due to the more complex computations required for common factor analysis; principal 
component analysis (PCA) has been utilized with the majority of extraction methods. These 
methods employ the Pearson correlation, which is the most effective type of correlation for interval 
and ratio scale data (Zwick & Velicer, 1986; O’Connor, 2000). However, many instruments in 
education and psychology use Likert scale items, which are ordinal. As such, the polychoric 
correlation should be implemented to eliminate biases such as the underestimation of the strength 
of the relationship between factors.  

Most comparison studies of factor retention focused on instruments with items measured on 
ratio and interval scales. As a result, Pearson correlation was used to determine factor loadings 
(Zwick & Velicer, 1986; Fabrigar et al., 1999). Systematically, categorical and ordinal scale data, 
which are less descriptive than interval and ratio scale data, are understudied in factor retention 
studies.  Though several studies (Timmerman & Lorenzo-Seva, 2011; Garrido et al., 2013; Garrido 
et al., 2011) have separately examined retention methods, MAP and PA, with ordinal and 
categorical data, none has compared the methods to determine which is optimal with categorical 
data.  

 
Definition of Terms 

 
Communality: “The squared factor loading represents the proportion of variance in the 

indicator that is explained by the latent factor” (Brown, 2006, p. 61). 
Eigenvalues: “Area-world, variance-accounted-for statistics that characterize the amount of 

information present in a given factor or function. (Eigenvalues are also sometimes synonymously 
called "characteristic roots)” (Thompson, 2004, p. 178). 

Factor: “A composite variable, which consists of the loading or correlation between that 
factor and each variable making up that factor. Factor analysis is used to determine the extent to 
which a number of related variables can be grouped together into a smaller number of factors 
which summarize the linear relationship between those variables” (Cramer & Howitt, 2004, p. 63). 

Factor loading: “are completely standardized estimates of the regression slopes for 
predicting the indicators from the latent factor, and thus are interpreted along the lines of 
standardized regression (β) or correlation (r) coefficients as in multiple regression/correlational 
analysis” (Brown, 2006, p. 15). 

Factor rotation: “Graphic visual or mathematical movement of the axes measuring the factor 
space used in exploratory factor analysis so that the factors can be more readily interpreted” 
(Thompson, 2004, p. 178). 
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Monte Carlo methods: “means of calculating, among other things, the probability of 
outcomes based on a random process. So any statistical test which is based on calculating the 
probability of a variety of outcomes consequent of randomly allocating a set of scores is a Monte 
Carlo method” (Cramer & Howitt, 2004, p. 104). 

Oblique rotation: “a form of rotating factors in which the factors are allowed to intercorrelate 
(i.e., permit factor axis orientations of less than 90°). The correlation between two factors is equal 
to the cosine of the angle between the rotational axes. Because cos(90) = 0, the factors are 
uncorrelated in orthogonal rotation. In oblique rotations, the angle of the axis is allowed to be 
greater or less than 90°, and thus the cosine of the angle may yield a factor correlation between 0 
and 1.0” (Brown, 2006, p. 31). 

Orthogonal rotation: “the process by which the factors are constrained to be uncorrelated 
(i.e., factors are oriented at 90° angles in multidimensional space). In applied social sciences 
research, orthogonal rotation is used most often, perhaps because it is the default in major statistical 
programs such as SPSS (varimax rotation)” (Brown, 2006, p. 31). 

Principal axis factoring: “a form of factor analysis in which only the variance shared 
between the variables is analyzed. Variance, which is unique to a variable or is error, is not 
analyzed. The shared variance or communality can vary from a minimum of 0 to a maximum of 
1. It is generally less than 1.” (Cramer & Howitt, 2004, p. 130). 

Principal components analysis: “aims to account for the variance in the observed measures 
rather than explain the correlations among them. Thus, PCA is more appropriately used as a data 
reduction technique to reduce a larger set of measures to a smaller, more manageable number of 
composite variables to use in subsequent analyses ” (Brown, 2006, p. 22). 

Literature Review 
 

In this literature review chapter, factor analysis is broadly described.  In addition the 
similarities and differences between principal components and common factor analysis are 
discussed. The next section of this chapter includes descriptions of several methods for 
determining the number of factors to retain, such as Horn’s parallel analysis, Velicer’s minimum 
average partial method, and Revelle’s very simple structure. In the last section, comparisons of 
these retention methods with Pearson and polychoric correlations are explained.  

 
Factor Analysis 

 
Even though factor analysis has been utilized for more than one hundred years, new analytic 

methods in combination with more powerful statistical programs and computers have permitted 
researchers from social sciences to health sciences to analyze data faster and more accurately. In 
addition, factor analysis has been utilized as a tool for evaluating construct validity of 
psychological instruments. When Spearman (1904) introduced factor analysis more than a century 
ago, he examined the interrelationships of students’ abilities in different subject areas along with 
the identification of observed characteristics; he related all these in a common factor, which he 
named “general intelligence. Cudeck and MacCallum (2007) described factor analysis as “one of 
the great success stories of statistics in social science.”  This success was attributed to the 
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technique’s ability to deal with popular subjects such as intelligence, social class, and health status, 
in which there are many unobservable variables.   

Hayton et al., (2004) pointed out that the decision the researcher makes regarding the number 
of factors to retain becomes more crucial in EFA than Confirmatory Factor Analysis (CFA) due 
to the fact that EFA is widely used in scale development even with a weak theoretical background. 
The importance of this decision making is summarized (Hayton et al., 2004) as follows; first, 
decision of the number of factors to retain has more impact on the results of the factor analysis 
than choice of methods and or type of rotation. Second, the balance between the number of factors 
to retain and the variance explained by the factors should be maintained in order to differentiate 
the major and minor factors. Third, specifying fewer or many factors would affect the results by 
leading to poor factor loading pattern production and interpretation.    

Fabrigar et al., (1999) advise balance between the minimum number of factors retained and 
the adequacy of this number to explain and cover the model. Additionally, the goal should be to 
determine the number of factors that describe the data given relevant theory, bearing in mind that 
this decision comes with some selection errors, which have a direct effect on the result. One such 
crucial error is under-factoring or over-factoring.  

 The result of under-factoring or over-factoring is well documented (Fava & Velicer, 1996; 
Wood et al., 1996; Zwick & Velicer, 1986). Studies suggest that under-factoring is less desirable 
because it is more likely to lead to substantial error.  If indicators that are supposed to be extracted 
as a separate factor are not included in the model but loaded on to other extracted factors, this 
results in poor estimation of factor loadings.  Likewise, if two factors are combined and rotated 
for a single common factor, the result can be difficult to interpret because of the complex pattern 
of factor loadings (Fabrigar et al., 1999). Research on the number of factors to retain indicates that 
over-factoring produces fewer problems in factor loading estimation than under-factoring. In over-
factoring, the extra factor would likely have one or more measured variables from each of the 
major factors. This would lead into the next step in PCA, where the extra factor merges as the 
major factor with the help of larger factor loadings (Fabrigar et al., 1999). 

Factor analysis is categorized into two groups according to the purpose of the usage of the 
procedure: exploratory factor analysis (EFA) and confirmatory factor analysis (CFA). If the 
number of factors or components were already known according to theory, CFA would be the 
proper procedure. On the other hand, if the number of factors is unknown and the study is 
examining a new instrument, then EFA is the appropriate procedure. In the present study, EFA 
will be the focal point due to the nature of the procedure. A critical initial step for researchers is 
determination of the number of factors to retain when conducting an EFA. Generally, in statistical 
packages, K-G-1 rule, PA, and MAP methods are designed to handle continuous variables, such 
as interval and ratio scales. However, there are vast amounts of instruments that utilize ordinal 
items in social science, especially in education.  

Floyd and Widaman (1995) categorized procedures for determining the number of factors to 
retain into three groups: statistical tests, mathematical and psychometric criteria, and rules of 
thumb. Maximum likelihood and the generalized least squares are statistical tests (Floyd & 
Widaman, 1995). These statistical tests are no longer acclaimed for defining the number of factors 
to retain (Velicer et al., 2000). The Kaiser-Guttman-1 rule (Kaiser, 1960), parallel analysis (Horn, 
1965), and minimum average partial (Velicer, 1976) are mathematical and psychometric criteria. 
Cattell’s scree test (Cattell, 1966), percentage of variance accounted for (Stevens, 2002), and 
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number of variables that have significant loading for a factor are rules of thumb (Gorsuch, 1983). 
Several independent researchers in the last three decades showed that mathematical and 
psychometric criteria are most frequently utilized by researchers (Velicer et al., 2000) while others 
are implemented as default methods in statistical software packages (such as, Kaiser- Guttman-1). 
Zwick and Velicer (1986) and Fabrigar et al., (1999) indicated that Velicer’s Minimum Average 
Partial method (Velicer, 1976) and Horn’s Parallel Analysis (Horn, 1965) are the most dependable 
and accurate methods for retention decisions in factor analysis with continuous variables even 
though they are not implemented as one of the default methods. Although Velicer’s Minimum 
Average Partial method (Velicer, 1976) and Horn’s Parallel Analysis (Horn, 1965) are well studied 
with items measured on a continuous scale, it is unclear how well existing retention procedures 
perform with ordinal items. Even when the methods that have demonstrated efficacy are used to 
retain the factors, retention decisions need to be interpretable and theoretically practical.  While 
the investigation is exploratory by nature, theory and previous research should provide a frame of 
reference for the optimum number of factors to retain (Fabrigar et al., 1999).  

It is important in exploratory factor analysis that the intent of the measure is directly related 
to observed variables; consequently, the sample of observations selected should be careful and 
thoughtful to lead to optimum results with EFA (Henson & Roberts, 2006). In other words, the 
factor can be identified as a cluster of several variables that are a homogenous set of items 
measuring similar traits. Under this description, the purpose of factor analysis is to explain a larger 
set of measured variables with a smaller set of latent variables (Henson & Roberts, 2006). Under 
a narrower perspective, EFA is utilized as a tool for identifying factor structure. In other words, 
the preference is for a minimum number of factors to explain as much as possible about the 
variance in observed variables. 

Interpretability of factors has been noted as an important part of EFA investigations by 
several researchers (Worthington & Whittaker, 2006). If interpretable and plausible factors are 
retained, factor analysis would be considered to reach the researcher’s goals. Even though strong 
empirical evidence may exist to support a factor, the retention of factors should depend on 
conceptual interpretability (Worthington & Whittaker, 2006). A significant amount of research has 
compared PA, MAP and VSS (retention methods) with continuous variables. On the other hand, 
because very few studies have examined them with ordinal items, there is need for comparison 
studies in this area.  

 
Comparison of Principal Component and Common Factor Analysis 

 
Principal Component Analysis (PCA) is the default technique of extraction in current 

statistical packages (Costello & Osborne, 2005). Even though PCA and factor analysis are utilized 
to reduce a larger number of variables to a smaller number of factors, both procedures have their 
own unique steps. PCA is the only extraction method that can be calculated by hand. Fabrigar et 
al., (1999) pointed out that principal axis factoring is recommended when data is not normally 
distributed. Moreover, significant difference between PCA and common factor analysis occurs 
when factors are poorly identified with low saturation (Velicer & Jackson, 1990). 
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Comparison of Exploratory Factor Analysis and Confirmatory Factor Analysis 
 

If little theoretical knowledge is available to identify factors, two main issues remain in EFA 
(Liu & Rijmen, 2008), they are: (a) what is the number of factors to retain, and (b) what is the 
relationship between observed and latent variables. This would be helpful in enabling model 
development that more accurately represents the data in EFA. It is unlikely that there are ever a 
finite number of factors resulting in a true model, even though many analysts proceed with this 
idea in mind. However, using a theoretical model-selection approach (Preacher et al., 2013) may 
be more helpful to identify a model that best balances model-data fit, where models are selected 
from a set of competing theoretical explanations from observed variables and attempt to develop 
the most parsimonious representation of factors that are worthwhile to retain, versus a fallacious 
correct number of factors approach.  Generally, analysts have very little or no prior knowledge for 
selecting the reasonable number of factors in EFA. However a theoretical background that supports 
model-based decision-making will result in a better solution with factor analysis.  

EFA is a “data-driven” approach (Brown, 2006) because often the number of factors is 
unknown at the beginning of the analysis as well as relationships between variables and factors. 
EFA may also be used for confirmatory purposes (Gorsuch, 1997) because EFA can be 
conceptualized as a two-tailed test, whereas confirmatory factor analysis, under this same 
conceptualization, can be thought of as a one-tailed test.  In scale development, the early stage of 
exploratory factor analysis is therefore an opportunity to test the dimensionality of the scale.  EFA 
can be helpful to identify, describe, and filter factors. During initial steps in scale development 
where EFA is appropriate, an iterative process of item deletion plays an important role because 
factors are affected by deleted items due to changes in factor loadings and cross-loadings on factors 
(Worthington & Whittaker, 2006).  

 
Methods for Determining the Number of Factors to Retain 

 
Although Kaiser- Guttman-1 and Cattell’s scree test are default methods in popular statistic 

packages, the two methods most often recommended for factor retention: Horn’s parallel analysis 
(PA), and Velicer’s minimum average partial method (MAP) will be compared in the present 
study. In addition, a relatively new method for factor retention: Revelle’s very simple structure 
(VSS) will be compared in the present study.  

 
Horn’s Parallel Analysis 
 
Horn's parallel analysis is one of the methods used for deciding the number of factors to 

retain in principal components and principal factor analysis (Horn, 1965). Even though it was not 
a popular analytic technique among social science researchers in the last three decades of the 21st 
century, it has proven its accuracy in testing the dimensionality of factors (Zwick & Velicer, 1986; 
Velicer et al., 2000). In addition, the availability of written code for SAS and SPSS (O’Connor, 
2000), made this method more frequently applied in the last decade. Since the Kaiser-Gutmann-1 
rule utilizes population statistics and does not consider or include sampling error and least squares 
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bias, the PA method (Horn, 1965), which estimates the proportion of variance due to sampling 
error, is recommended for use in factor analysis. 

Horn (1965) takes some further steps from Kaiser’s (1960) proposed retention method which 
retain the components with eigenvalues greater than one, and formulates his technique with finite 
number of observations as follows: 

First, conduct a parallel PCA on an n by p matrix of random values. Second, repeat this k 
times; and third, average the eigenvalues λ!"  over k, to produce λ!"""" and lastly, adjust λ! by 
subtracting from it (λ!"  -1) to produce λ!

#$%(Dinno, 2011, p.4). 
So, the retention technique can be summarized as in Equation 1 and 2 (Dinno, 2011, p.4): 
 

λ!
#$% #> 1	𝑟𝑒𝑡𝑎𝑖𝑛														

≤ 1	𝑑𝑜	𝑛𝑜𝑡	𝑟𝑒𝑡𝑎𝑖𝑛   (1) 

λ! 0
> λ!""""		𝑟𝑒𝑡𝑎𝑖𝑛															
≤ 	 λ!""""	𝑑𝑜	𝑛𝑜𝑡	𝑟𝑒𝑡𝑎𝑖𝑛	

   (2) 

 
 The PA procedure uses Monte Carlo simulation, which begins with sample size and the 

number of variables in an intended real data set. With these two parameters, the simulation 
generates matrices on random data. In PA the results involve comparing eigenvalues of the original 
sample correlation matrix and the generated random data matrix to decide the number of factors 
to retain (Buja & Eyuboglu, 1992). Parallel analysis generates correlation matrices where 
parameters are based on the sample size and the number of variables in empirically collected data 
(or real data). When the mean of eigenvalues from the generated correlation matrices are compared 
to eigenvalues from a real data correlation matrix, at some point observed eigenvalues become 
smaller than the generated eigenvalues, this crossover provides a cut point to determine the number 
of factors to retain.  

There is no limitation in generating the number of matrices of random data; however, the 
same values must be used for the generating data; these include sample size and the number of 
variables in the actual data.  Similar to K-G-1, where there is no practical difference between 1.0 
and 0.99, investigators can make clear decisions with such miniscule differences using PA 
(Fabrigar et al., 1999).  

Even though PA is a well-established method to determine the number of factors to retain, 
it tends to underestimate the number of factors when the first eigenvalue is relatively large 
compared to others (Beauducel, 2001). As shown by many studies on PA (Zwick & Velicer, 1986; 
Fabrigar etal., 1999; Peres-Neto et al., 2005;), the procedure is most accurate when factors are 
orthogonal and the sample is large.  With smaller sample sizes, and less simple structure, PA is 
likely to under-extract with oblique data (Beauducel, 2001). The accuracy of PA is directly related 
to sample size and inversely related to the number of components presented in the population 
matrix. Under-extraction may be solved (to some extent) with a large sample size.  

PA performs well with both Pearson and Polychoric correlations (Cho et al., 2009). 
Polychoric based PA produces fewer factors because of higher correlation among factors, and 
yields larger initial factors.  
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Several different versions of PA are reported. The most common PA procedure with PCA 
as described by Crawford et al. (2010) requires multiple sample correlation matrices be generated 
under assumptions of normally distributed and uncorrelated population data. It is also important 
that sample size and the number of variables are the same as observed data. A variation of PA is 
proposed by Buja and Eyupoglu (1992) where instead of generating random data with normality 
assumptions, the procedure requires generating simulated data using permutations of existing data. 
This version of PA does not produce significantly different results than the original version.  

Increasing sample size, loadings, and the number of variables will improve the performance 
of PA (Crawford et al., 2010). When high correlations exist among factors and the average factor 
loading is smaller, results of PA tend to over or under extract factors. It has been shown that PA 
using polychoric correlation with ordinal data results in better accuracy for identifying the number 
of factors to retain (Timmerman & Lorenzo-Seva, 2011). But it is difficult to apply the polychoric 
procedure with empirical data because convergence is often unattained.  

Horn (1965) developed PA based on common factor analysis; however, some researchers.  
(Buja & Eyuboglu, 1992; Crawford, et al., 2010) have pointed out that because of using an 
unreduced correlation matrix, PA is more appropriate for PCA. PA appears to work well with both 
common factor and PCA. 

 
Velicer’s Minimum Average Partial Method 

 
Similar to PA, MAP (Velicer, 1976) has been difficult to conduct because it is not 

implemented in popular statistical packages (O’Connor, 2000).  Several studies (Zewick & 
Velicer, 1986; Velicer et al., 2000) indicate that MAP has a tendency to under-extract the number 
of factors, and as already stated, under-extraction is perceived to be a more serious problem than 
over-extraction in factor analysis (Zewick & Velicer, 1986; Velicer et al., 2000). The matrix of 
partial correlation is central to the MAP retention method in the context of principal component 
analysis (Velicer, 1976). Velicer et al. (2000) briefly summarized the steps of MAP as follows: 
“First each component is partialed out of the correlation matrix and the partial correlation matrix 
is calculated. Second, for the number of variables, the average of the squared correlation matrix is 
computed. Lastly, the number of components to retain is indicated at the point where the average 
squared partial correlation reaches a minimum” (p. 44).  

The matrix of partial correlations is obtained by first computing the partial covariance matrix 
(Velicer, 1976, p.322),  

 
 C11* = R - A A' (3) 
 
where C is the partial covariance matrix, R is the correlation matrix, and A is the pattern 

matrix. The partial correlation matrix is then computed  
 
R* = D' C D  (4) 
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where R* is the matrix of partial correlations and D is the diagonal of the partial covariance 
matrix. The MAP procedure involves determining when the matrix of partial correlations most 
approximates an identify matrix, i.e., determining the value m for which  

 
R* = I (5) 
 
Velicer (1976) proposes the statistic to determine the number of components to extract as 

follows: 
 
fm = ∑∑ (𝑟&%∗ )(&)% /(𝑝(𝑝 − 1) (6)  
 
where 𝑟&%∗  is the element in row i and column j of the matrix of partial correlations. The value 

of fm is the average of the squared partial correlations after the first m components are partialed 
out. The proposed stopping point is the value of m for which fm is at a minimum. The value fm 
would be calculated from m = 1 to p - 1; the value of fm for m = p is indeterminate since the diagonal 
of C11* (partial covariance matrix) consist of zeros. The values of fm will range between 0 and 1. A 
second summary of statistic, useful for comparative purposes, is  

 
 f0 = ∑∑ (𝑟&%∗ )(&)% /(𝑝(𝑝 − 1) (7) 
 
If f1 > f0 , then no components would be extracted (p. 323). 
 
Garrido et al., (2011) summarized the findings of different versions of MAP as follows: “All 

different versions of MAP perform better with a larger sample size, higher factor loadings, more 
variables per factors, less number of factors, lower factor correlations, and smaller skewness” (p. 
556). The other conclusion was that all versions of MAP procedures underestimate the number of 
factors to retain. Additionally, factor loadings and the number of variables per factor are the most 
influential variables that affect the accuracy of the MAP method. Fabrigar et al., (1999) point out 
that MAP is designed only for PCA and not recommended for common factor analysis. MAP is 
originally based on PCA; the rationale of the method is theoretically informed by CFA (Velicer, 
1982, Velicer & Jackson, 1990). MAP standardizes residuals by converting them into partial 
correlations (Velicer, 2000). As mentioned earlier, a limitation of MAP is the tendency to under-
factor when factor loadings are small and there are few observed variables per factor (Zwick & 
Velicer, 1986). Another drawback to MAP is that the cut off value is very close to the adjacent 
value; it is possible to get two lowest average square partial correlations which are very close to 
each other from MAP run. However, variations in sample size tend to produce minuscule effects 
on the accuracy of MAP (Velicer, 2000).  
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Revelle’s Very Simple Structure  
  
Very Simple Structure (VSS) utilizes comparisons of the goodness of fit of simple structure 

matrix with the initial correlation matrix to determine the optimal number of factors to retain from 
the correlation matrix (Revelle & Rocklin, 1979). VSS helps to answer not only the question of 
how many factors to retain but also the question of how to rotate the factors that have been retained 
(Revelle & Rocklin, 1979, p. 405). The general tendency in the interpretation of factor retention is 
that parallel to the nature of factor retention techniques, generally the largest loadings are examined 
while smaller loadings are ignored or under examined (Revelle, 2013). The default number of 
observation used with VSS is 1000, but it can be specified. VSS draw a plot to show model fits by 
means of number of factors (Revelle & Rocklin, 1979). 

  
The steps of VSS are briefly listed by Revelle and Rocklin (1979, p 405-407) as follows: 

First, find an initial factor solution with k factors (principal factor can be utilized), and then in 
second step, rotate the solution to maximize the rotation criterion that is preferred, such as 
Varimax, or an oblique rotation. In the third step, the VSS criterion is applied in two step 
procedure; first of all, for the VSS solution of factor complexity v,replace the k-v smallest elements 
in each row of the factor pattern matrix with zero. This matrix is called simplified factor matrix 
Svk. And then, to evaluate how well a particular rotated factor solution Fk fits a simple structure 
model of factor complexity v, consider how well the matrix: 

 
Rv*=SvkΦS’vk (8) 
 
(where Φ is the factor inter-correlation matrix) reproduces the initial correlations in R. That 

is, find the residual matrix: 
 
 𝑅*""" = R- Rv* = R- SvkΦS’vk (9) 
 
 In the next step, as an index of fit of 𝑅*""" to R, find one minus the ratio of the mean square 

residual correlation to the mean square original correlation: 
 
 VSSvk= 1- MSr’/MSr (10) 
 
where the degree of freedom for these mean square are the number of correlations estimated 

less the number of free parameters in Svk. The mean squares are found for the lower off-diagonal 
elements in R and 𝑅". 

 Finally, to determine the appropriate number of factors to extract, find the value of VSS 
criterion for all values of k from one to the rank of matrix. The optimal number of interpretable 
factors is the number of factors, k, which maximizes VSSvk (Revelle & Rocklin, 1979, p.405-407). 
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Comparison of the Methods 
 
Comparison of Methods with Pearson Correlation 
 
A summary of study findings on factor retention methods based on Pearson correlation is 

presented in this section. Several studies propose that PA is the most suitable technique to decide 
the number of factors to retain (Humphreys & Montanelli, 1975; Glorfeld, 1995; Zwick & Velicer, 
1986). Glorfeld (1995) also concluded, similar to Zwick and Velicer (1986) that PA is a better 
method compared to the other factor retention methods. 

Minimum Average Partial Method (MAP; Velicer, 1976), similar to PA, utilizes principal 
component analysis and is established on partial correlations of variables.  It also uses the EFA’s 
common factors to determine how many factors or components to extract. In MAP the first step is 
to determine what components are common solution, without trying to find the cutoff point for the 
number of factors. MAP appears precise under many situations although under certain situations 
it may divulge a propensity to underestimate the number of factors (Zwick & Velicer, 1986). When 
there are small factor loadings and few variables per component, MAP consistently underestimates 
the number of major components (Zwick & Velicer, 1986). 

Henson and Roberts (2006) recommended that multiple criteria be utilized to determine the 
number of factors to retain in EFA because this early decision will directly affect the rest of the 
analysis. Defining a factor and interpreting a factor depends on how many factors are retained; if 
over or under factoring occurs then conclusions leading to decisions about factors will be different 
because of the omitted or combined factors in the main factors (Henson et al. 2004). A study by 
Henson et al. (2004) showed that the K-G-1 rule is the most popular method, followed by the scree 
test. More interestingly, about one third of researchers utilize prior theory to aid in the number of 
factors to retain, which implies that CFA could be used instead of EFA. A large proportion of 
papers using EFA (22.4 %) failed to report the retention method that was used with the EFA and 
only 8 percent of the studies that performed EFAs used more than one retention rule which is 
recommended by many scholars (Henson et al., 2004). Two of the most accurate methods, PA and 
MAP were not used in any of the articles that were studied by Henson et al. (2004).  

Another comparison study by Worthington and Whittaker (2006) summarized studies 
published in the Journal of Counseling Psychology between 1995 and 2004 using EFA, 18 percent 
of the studies used K-G-1 rule for factor retention decisions, and 17 percent utilized the scree test. 
No studies utilized the PA or MAP methods. Gorsuch (2003) acknowledged that although there 
are many retention methods, none of them are solely adequate. In EFA, there are several different 
variables that have various levels of contribution to the determination of the optimum number of 
factors to retain. For this reason, it is advisable to examine the results obtained from several 
different methods before determining the number of factors to retain by interpretability of the 
solution (Hayashi et al., 2007). 

Velicer et al. (2000) study's conclusion could be compendious as follows: In terms of 
theoretical rationale, MAP is the most dependable method; the K-G-1 rule is the easiest rule to 
implement, yet the results of this method are exceptionally inaccurate and not recommended. PA 
is more accurate than MAP, although both are considered the most reliable methods. Velicer et al., 
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(2000) drew a road map for researchers who need to determine the number of factors to retain in 
EFA as follows: Perform a component analysis at the early stages of EFA, use a combination of 
MAP and PA methods to determine the best solution, ensure that the final factor solution is 
interpretable and if not run the analysis a second time. The K-G-1 rule is not recommended and 
further should be excluded from statistical packages as the default method.  

Thompson (2004) advises using several different strategies would help to make a decision 
easier especially if results confirm each other. He pointed out that because eigenvalues carry 
sampling error, a researcher should employ judgment when the K-G-1 rule is used to make a 
decision in factor retention. Henson and Roberts (2006) reported that 55 percent of published EFA 
studies utilized one criterion to determine the number of factors to retain. Therefore, they 
recommended that more than one method be used to check agreements; particularly in situations 
where there are a large number of factors expected to be retained. Five main elements, have been 
identified that would shape the results of the analysis in factor retention: (a) the size and composure 
of the sample, (b) selection of variables, (c) model fit, (d) rotation methods, and (e) the number of 
factors (Velicer et al., 2000). 

Parallel with advancements in computer programming and availability of speed in 
computation to researchers in the last decade, MAP and PA were utilized more frequently as factor 
retention methods in item analysis. Both of these methods are based on principal component 
analysis that claims to be an approximation of CFA. Even though PA and MAP are the most 
accurate procedure for determining the number of factors to retain, these are not offered by popular 
statistical packages, but these procedures could be run with free software, such as R with the 
FACTOR package (Lorenzo-Seva & Ferrando, 2006). Fabrigar et al., (1999) advised using more 
than one method to examine the rotated solution for the model, and then compare the solution with 
theory and interpretability.  

 
Comparison of Methods with Polychoric Variables 

 
An EFA utilizing ordinal items and performed in SPSS showed that Velicer’s MAP 

performed better when compared to other factor retention methods such as PA, VSS, scree test and 
K-G-1 (Basto & Pereira, 2012). However, K-G-1 rule overestimated the number of factors to 
retain, in spite of being the default procedure in some of the statistical packages. The typical 
correlation used in PA and MAP methods is the Pearson correlation because these methods depend 
on the linear relationship between factor scores and expected values. Yet this assumption may not 
be valid with ordinal items because the Pearson correlation would underestimate the relations 
between the items (Timmerman & Lorenzo-Seva, 2011).  

In the last decade, several researchers (Cho et al., 2009; Garrido et al., 2013) implemented 
studies to investigate the analytic methods used to determine the number of factors to retain with 
ordinal items. These studies mainly focused on the two most accurate methods: MAP and PA. Cho 
et al. (2009) investigated PA with polychoric correlations, which are designed for ordinal items. 
The comparison of PA with Pearson correlation and PA with polychoric correlation indicates 
similar performances to determine the optimal number of factors. Polychoric correlation was 
shown to obtain an unbiased estimation of the relationship among observed categories.  
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Garrido et al., (2011) examined the performance of factor retention with categorical data 
using Velicer’s Minimum Average Partial method. The investigation examined the relative impact 
of several variables on the accuracy of the MAP method with ordinal items. The manipulated items 
in this study were similar to the Cho et al., (2009) study, including factor loading, factor 
correlation, number of variables per factors, number of response categories, sample size, and 
skewness. There are three recommendations: (a) if the items are categorical, use polychoric 
correlations and the square of partial correlations instead of Pearson correlations, (b) smooth the 
non-Gramian polychoric matrices with the ridge procedure, and (c) design scales to be identified 
by at least six variables (Garrido et al., 2011). Garrido et al., (2011) specified that the most accurate 
MAP estimations resulted in the combination of these criteria: polychoric correlation instead of 
Pearson, use the instrument that has scales with at least six variables, and the mean of random 
eigenvalues instead of the 95th percentile. 

Holgado–Tello et al., (2010) compared factor results with polychoric correlation and Pearson 
correlation, and concluded that when polychoric correlations were used for a measurement model, 
it produced a better result, regardless of the number of factors. Timmerman and Lorenzo-Seva 
(2011) also pointed out similar findings for polychoric correlation as more reliable relative to 
Pearson correlation for principle axis factoring in factor analysis. 

  
Factor Retention for Categorical and Ordinal Data 

 
In social science, most variables for factor analysis are items from scales that are measured 

with ordinal or nominal responses. While many different factor retention methods have been 
utilized in EFA with items measured on a continuous scale (Garrido et al., 2011), ordinal items 
have not been exposed to examination by researchers.  Pearson correlation routinely 
underestimates the strength of relationship between categorical variables (Babakus et al., 1987; 
Bollen & Barb, 1981), or can produce spurious “difficulty” factors (Gorsuch, 1983). Consequently, 
Pearson correlation produces biased dimensionality estimates with categorical data. 

 Using ordinal items in factor analysis presumes that the relationship between the items is 
nonlinear (Cho et al., 2009). Basto and Pereira (2012) indicated that under PCA and factor analysis, 
Pearson correlation is the only option for such analyses therefore ordinal items are, by default, 
examined with Pearson correlation. Ordinal items can only be considered a rough representation 
of unobserved continuous items (Basto & Pereira, 2012).  

 
Monte Carlo Simulation 

 
In many situations it is impossible or impractical to obtain analytical data for statistical, and 

in particular psychometric analyses. However, it is possible to generate random data in the form 
of sampling distributions that conforms to prior established parameters such as the number of 
factors, factor intercorrelation, number of items, number of respondents through a computer 
simulation referred to as a Monte Carlo procedure. The general goal of Monte Carlo (MC) 
simulations is to reach maximum generalizability and replicability of obtained results. Studies 
often use Monte Carlo simulation to examine the effect of extreme potentials of variables, such as 
very large sample size, to identify the potential of a methodology; in the present study this would 
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be a factor retention method (Hutchinson & Bandalos, 1997). Monte Carlo simulations can be 
programmed to generate sample covariance matrices with a specified population, correlation 
magnitude, number of items, and sample size (Choi et al., 2011). In other words, Monte Carlo 
simulation methods help researchers generate sample data by controlling and manipulating the 
variables to test the functionality of statistical analyses. Simulation also provides the opportunity 
to manipulate variables that represent a variety of possible samples.   

Monte Carlo simulations provide researchers a tool to understand sampling distribution and 
random sampling (Mooney, 1997). It is advised empirically by MC simulation via “using random 
samples from a known population of simulated data to trade a statistics behavior” (Mooney, 1997, 
p.2). 

Mooney (1997) explains the principles of Monte Carlo as follows: “the behavior of a statistic 
in random samples can be assessed by the empirical process of actually drawing lots of random 
samples and observing this behavior” (p.4). In addition, Mooney (1997) describes the complexities 
of generating Monte Carlo simulations and interpretation of estimated sampling distributions.  

The number of replications implemented is crucial for MC simulation. Wilcox (1992) 
recommended 1000 replications for MC simulation, a conservative estimate (Wilcox, 1988). It 
should be noted however that a higher number of replications is preferred as this provides more 
stable estimates and more precise confidence intervals (Thoemmes et al., 2010). Mundform et al. 
(2011) recommended 8000 replications for the Monte Carlo simulation would be sufficient for 
stable results. MC simulations can help researchers to generate sampling distributions that are 
theoretical and unobserved (Paxton et al., 2001).  

Hutchinson and Bandalos (1997) describe MC studies as data generation based on behavior 
of statistical estimators. MC studies' sampling distributions are fundamental to inferential statistics 
and mathematically generated according to known parameters of a population distribution, for 
example normality and sample size (Hutchinson & Bandalos, 1997). Similar to a typical research 
study, MC simulation involves several steps including identification of the population, description 
of sampling data, data collection, and data analysis (Hutchinson & Bandalos, 1997).   

Hutchinson and Bandalos (1997) describe the steps of MC studies as follows: First, it is 
necessary to define the research question, as it shapes the analytic question. Second, the researcher 
needs to specify parameters, such as the number of replications and the design of the study. Third, 
the simulation program should be written to generate data in light of previous designs in the area. 
Finally, the generated sample data should be analyzed according to the design and hypothesis.   

MC studies generate samples from distributional criteria, and then examine the totality of all 
sample distributions generated under imposed limits for variables.  Outcomes represent 
probabilities of events that would occur under the specified conditions. These studies help the 
researcher to generate and control many variables, such as the size of a sample, which would be 
difficult to replicate in practice.   

Harwell et al., (1996) advise that if a problem could not be solved analytically or 
mathematically, an MC study should be implemented as an alternative way of conducting the 
study. Moreover, other than using simulated data, MC studies are identical to empirical studies 
(Harwell et al., 1996).  The parameters of variables have to be selected after variables to be 
manipulated are identified. In the first step of MC simulation, dependent variable(s) should be 
identified. Dependent variables must be specified with Type I and II error and/or permissible 
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parameter estimate bias (Hutchinson & Bandalos, 1997). To run a Monte Carlo simulation, it is 
necessary to determine independent variables size and parameters (e.g. the range and or 
distributional shape of variables). The limitation of independent variables would affect the 
generalizability of the results (Hutchinson & Bandalos, 1997). 

There are several advantages of using inferential statistics in MC simulation analysis: 
sampling error would be taken into account, and the magnitude of effect sizes would be estimated 
(Hutchinson & Bandalos, 1997). Harwell et al. (1996) pointed out that when an analytic solution 
does not exist or is unfeasible due to complexity, MC studies are essential for arriving at a solution. 
With MC studies, the combination of parameters are easily manipulated and specified. The 
simulation of large samples helps mitigate the cost of working with humans.     

 Researchers aim to generalize the pattern and result that are obtained from one sample of 
data to infer conclusions about the larger population that the sample was selected from for analysis 
(Carsey & Harden, 2014). It is very rare to have a large number of different samples from a 
population to repeat the analysis; hence Monte Carlo simulation should be utilized to create many 
sampling data with similar parameters of a population. 

 Carsey and Harden (2014) define Monte Carlo simulation as “any computational algorithm 
that randomly generates multiple samples of data from a defined population based on an assumed 
Data Generating Process (DGP)” (p.4). Monte Carlo simulation allows researchers to control the 
parameters of the population DGP, which allows for the comparison of theoretical models and 
statistical estimators (Carsey & Harden, 2014).  

 Simulation can provide a tool to examine and comprehend the results of analysis. In 
addition, simulation can help researchers to control and adjust the magnitude of effects on their 
own samples. Simulation is also very handy in some cases; such as when there is no analytic 
solution and unknown statistical properties of an estimator (Carsey & Harden, 2014).   

 Carsey and Harden (2014) summarize the steps of Monte Carlo simulation as follows: 
• Define the specifications of DGP, which are evaluated in the study. The 

mathematical formulas and procedures must be stated to produce the data for 
comparison.  

• Pattern out the simulated data that are compared with the true DGP. 
• Make changes on theoretical DGP and rerun the simulation to examine the different 

pattern with new simulations. 
 

Number of Replications 
 

The number of replications in MC studies is equivalent to sample size in empirical research. 
Harwell et al. (1996) recommended a few thousand replications, at minimum, to minimize 
sampling variance. Another crucial aspect of MC studies is obtaining reliable results. The number 
of replications should be from 2000 to 5000 to produce reliable estimates for parameters 
(Hutchinson & Bandalos, 1997).  

 
Variables for Simulation with Factor Retention 
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There are several options that should be considered for simulated variables in factor analytic 
research, including factor pattern loadings, number of items per factor, sample size, and factor 
intercorrelation (Cho, et al., 2009). The most influential among these is the correlation among 
factors; pattern loading size, and the number of variables per factor. Crawford et al. (2010) 
manipulated the number of observations (sample size), number of factors, number of items, factor 
loadings, and factor correlations and found that the difference between precision of PA-PCA and 
PA-PAF were minor. Moreover, smaller sample size and smaller factor loading led to over-
factoring. In addition, correlated factors led to under-factoring error within PA-PCA. When the 
number of factors is under estimated, rotation results in a distorted solution. When selecting 
variables, manageability must be taken in to consideration in terms of time and software resources 
(Hutchinson & Bandalos, 1997). Moreover, Hutchinson and Bandalos (1997) recommend that if 
simulated variables were categorical, ANOVA would be the most proper design for analyzing 
results as inferential statistics. 

 
Sample Size for Factor Analytic Retention  
 
Larger sample sizes are preferable in scale development to minimize the random effects of 

scale variance (Tabachnick & Fidell, 2001). Although Gorsuch (1983) recommended sample sizes 
of 100 as an absolute minimum, Comrey and Lee (1992) indicate 100 is poor, and suggested 500 
as a very good size for a sample. The size of a sample is not an influential variable alone in factor 
recovery; different combinations of variables result in a good factor recovery. For example a 
sample size of 40 would be good enough in some combinations of conditions while a sample of 
1000 could be inadequate in certain situations such as low communalities, and large number of 
weakly determined factors (MacCallum et al., 2001). MacCallum et al., (1999) reported in their 
sample size study that with high communalities, sample size and over-determination; it is possible 
that even a very small sample size (n<100) could be sufficient.  

The increase in number of factor, ratio of number of variables and sample size leads to better 
accuracy in estimation of factor loading and better stability in the solution (Browne, 1968). In 
addition, Zwick and Velicer (1986) advised that the sample size should be at least 5 times the 
number of variables. The cost of collection and availability of subjects limits the size of the sample. 
In other words, to estimate population parameters with accuracy, the sample size should be 
sufficient which is often a limitation imposed by cost and availability.  

 
Polychoric Correlation in Factor Analytic Retention  

 
Even though many educational and psychological measures are composed of Likert scale 

items, popular statistical packages are performing PCA and factor analysis with Pearson 
correlation, which means that nominal and ordinal data were treated as interval or ratio data. 
Polychoric correlation coefficients are maximum likelihood estimates of Pearson correlation with 
normally distributed variables. It is assumed that the item responses are normally distributed. Even 
though a Pearson correlation analysis is based on the assumption of a linear relationship between 
variables, this may not be the case for ordinal data. Due to strong skewness and kurtosis in Likert 
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scale items, it is suggested that using polychoric correlation would be appropriate with ordinal data 
instead of Pearson correlations (Basto & Pereira, 2012; Bernstein & Teng, 1989). 

Timmerman and Lorenzo-Seva (2011) defined polychoric correlation as a maximum 
likelihood estimate for Pearson correlation between underlying variables. It is assumed that 
ordered polytomous variables represent an underlying bivariate normally distributed variable. 
Garrido et al., (2011) indicated that polychoric correlation is more accurate than Pearson 
correlation in determining the number of factors to retain with ordinal items when using the MAP 
method. If Pearson correlation were used to calculate correlation coefficients with ordinal items, 
the strength of the relationship between variables would be underestimated (Cho et al., 2009).  
Polychoric correlation, which produces unbiased estimates of relationships among variables, is 
recommended with ordinal data (Cho et al., 2009).  

Even though polychoric correlation produces unbiased parameter estimates for EFA, the 
procedure generates large sampling errors and often produces indefinite correlation matrices 
(Garrido et al., 2011).  

 
Limitations of Monte Carlo Simulation 

 
While MC simulation provides many advantages, the procedure has disadvantages. First, 

some permutations of variable combinations do not reflect real life conditions and often are not 
helpful. Second, improper model design can lead to poor external validity.  Third, extreme 
conditions of simulation studies are similar to outliers in general inferential analysis. Fourth, 
inadequate numbers of replications affects the dependability of results. Finally, it is often 
impossible to include all factors as simulated variables that could have an effect on the results 
(Hutchinson & Bandalos, 1997). 

Limitations of MC simulation can be summarized in two points. First, the practicality of MC 
simulation heavily depends on the reflection of the reality of conditions that are modeled and 
generated. Second, the number of replications in MC simulation is crucial, and it is important to 
produce a model that fits the sampling distribution. In other words, because Monte Carlo 
simulation generates random data with constraints, it is possible to not represent whole points and 
characters of real population data (Hutchinson & Bandalos, 1997). Additionally, more conditions 
or parameters of variables can lead to longer simulation runs. It is also difficult to distinguish 
significant combinations of conditions. One of the criticized aspects of MC studies is that the 
researcher has full control of the parameters, which could lead to very rare and extreme results in 
regular research settings (Hutchinson & Bandalos, 1997).  

Implications for Education: This study recommends comparing the methods and procedures 
for determining the number of factors to retain with categorical data, utilizing polychoric 
correlations via Monte Carlo simulation. For instance, this work might help more teachers, 
administrators, and students better measure academic performance and reduce the failure rate. 
These methods will also provide a clearer picture for teachers and administrators to assess their 
achievements and measure teaching styles. These methods can be implemented in the classroom 
environment to address various issues related to learning styles, educational performance, and 
more. 
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Conclusion 
 

Even though vast amount of measurement instruments in education and psychology consist 
of items measured with Likert scales generating ordinal data, when these ordinal data are analyzed 
in factor analysis with Pearson correlation the data are mistakenly interpreted as interval or ratio 
scale data. Parallel to this general misconception, ordinal and categorical data in factor analysis 
with polychoric correlation are understudied.  

The performance of each retention method should be examined on simulated categorical 
data. The future studies should also test these procedures to determine relative effectiveness for 
categorical data under a variety of practical conditions by varying the number of respondents, 
number of factors in population, magnitude of inter-factor correlations, and factor loadings. 
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